Temporal Spiking Recurrent Neural Network for Action Recognition
نویسندگان
چکیده
منابع مشابه
A BoW-equivalent Recurrent Neural Network for Action Recognition
Bag-of-words (BoW) models are widely used in the field of computer vision. A BoW model consists of a visual vocabulary that is generated by unsupervised clustering the features of the training data, e.g., by using kMeans. The clustering methods, however, struggle with large amounts of data, in particular, in the context of action recognition. In this paper, we propose a transformation of the st...
متن کاملSpatial-Temporal Recurrent Neural Network for Emotion Recognition
Emotion analysis is a crucial problem to endow artifact machines with real intelligence in many large potential applications. As external appearances of human emotions, electroencephalogram (EEG) signals and video face signals are widely used to track and analyze human’s affective information. According to their common characteristics of spatial-temporal volumes, in this paper we propose a nove...
متن کاملAttention-based Temporal Weighted Convolutional Neural Network for Action Recognition
Research in human action recognition has accelerated significantly since the introduction of powerful machine learning tools such as Convolutional Neural Networks (CNNs). However, effective and efficient methods for incorporation of temporal information into CNNs are still being actively explored in the recent literature. Motivated by the popular recurrent attention models in the research area ...
متن کاملRecurrent Neural Networks for Temporal Sequences Recognition
Time is the center of many human tasks. To talk, to listen, to read or to write are examples of time related tasks. To integrate the time notion into neural network is very important in order to deal with such tasks. This report presents various tasks that are based on temporal pattern processing and the different neural network architectures, simulated to tackle the problem. We examine the mai...
متن کاملStochastic Recurrent Neural Network for Speech Recognition
This paper presents a new stochastic learning approach to construct a latent variable model for recurrent neural network (RNN) based speech recognition. A hybrid generative and discriminative stochastic network is implemented to build a deep classification model. In the implementation, we conduct stochastic modeling for hidden states of recurrent neural network based on the variational auto-enc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2936604